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1. I NTRODUCTION

The P-T criterion for the onset of detonation, first proposed by Walker
and Wasley I has become a central issue in the study of detonation mechanics.
Although the criterion has been criti,.ized, most recently by Moulard, 2 the
criterion has been extensively employed and supported by experimental studies.
E. H. Walker8 has recently employed the criterion successfully in a study
comparing fratricide initiation in a variety of artillery shells with differing
explosive fills. Thus,any satisfactory understanding of detonation onset will

require an understanding of the P-T mechanism.

A number of studies 9 -1 3 have sought to derive or calculate values

for the P2T criterion, but none has provided a strictly physical theory
free of ad ;oc assumptions as to the origin and distribution of initiation
sites, "hot spots", or the assumed initiating temperature distribution
behind the shock front. Ramsey 14 argues such an assumption is not important

to derive the relation P2T=const., but evaluating this constant for different
explosives must depend on the mechanism that gives rise to the initial
heating and evolution of heat in the explosive. Howe, et a11 5 have shown
that shock initiation of detonation consists of two processes: an ignition
process and a build up process. They present evidence that the build up
to detonation is controlled by a heat transfer dominated grain burning
process. The ignition process appears to arise from shock induced "hot
spots."

The necessity of the hot spot concept of Bowden 16 and Eyring1 7 arises
from the fact that under shock initiation conditions the bulk temperature
of the explosive is much too low to initiate decomposition. Various
mechanisms have been proposed to account for the hot spots controlling the
ignition process. Bowden and Yoffe1 6 proposed adiabatic compression of
gas as the principal mechanism, but also discussed plastic work in solid
explosives as a mechanism. Mader1 8 studied the mechanism of direct heating
of the explosive by void closure; Seeley19 has suggested jetting during void
closure as the mechanism for hot spot formation; and Delpuech, et a1

20

suggest shock induced free radical formation as playing the critical role
in the initiation process.

II. FREY'S SHEAR BAND MODEL

Recently Frey 21 has proposed a shear band theory for hot spot formation.
Frey suggested these shear bands might arise during void closure or during
shock induced displacement of the explosive near irregularities at the
explosive-container wall interface, as shown in Figure 1. Starting with this

S *hypothesis, Frey showed that shearing under pressure could lead to sufficiently
rapid heating of the explosive to generate hot spots in the explosive adequate
to give rise to initiation of the explosive. However, the shear velocities
indicated by the shear band mechanisms shown in Figure 1 do not depend

on the explosive material properties. As such, the P2T criterion as a property
of the explosive would be difficult to understand.

7
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Until recently, shear bands in shock loaded explosives had not been
observed. Gibbons 22 has recently obtained scanning electron micrographs
showing an extensive shear band structure in shock loaded comp B, Figure 2.
The comp B also shows evidence of incipient reaction of the TNT matrix in
the area of the shear bands. From the location of these shear bands it is
apparent that the shear bands do not result from either cavity col lapse or
container wall irregularities. The shear bands could also arise from the shear
stress field in the explosive produced by deformation of the explosive container.
iowever, that flow field depends primarily on the characteristics of the container

and the container's response to impulsive loading, and only to a lesser degree
on the properties of the comp B fill. Such an origin for shears leading to ini-

tiation of the explosive would not be likely to involve the P 2T criterion.
Another cause for the occurrence of the shear bands is required. A mechanism for
shear band production that makes use of Frey's shear band theory and that provides
a procedure for the computation of P 2T criterion values for explosives is pro-

sented below. In a separate report 23 we derive the P2 T criterion based on the
model presented here.

11I. SHEAR BAND PRODUCTION BY SHOCK LOADING IN HETEROGENEOUS EXPLOSIVES

Assume a shock passes through a material, such as comp B, consisting of
grains of one material, RDX, embedded in a matrix of a second material, here
TNT. The pressure p behind the shock is given in terms of the density p,
sound velocity u, and particle velocity v by

p=oUV . (1)

Although the pressure is the same in both the RDX grains and the TNT matrix,
since the impedance, ou, differs in the two materials, the particle velocity
will differ in the two constituents, as indicated in Figure 3. Table I shows
the densities, sound velocities and particle velocities for RDX and TNT for
a 2.5 GPa shock pressure. The resulting velocity difference is

V =v 1 -v 2  • (2)

From Table 1 this gives 70 m/s.

TABLE 1

Densities, Sound Velocities, and Particle Velocities for the

Constituents of Comp B at 2.5 GPa*

3
-- (g/cm ) u(km/s) v (km/s)

RDX 1.80 3.53 0.395

TNT 1.01 3.34 0.46b5

*Computed from shock ilugoniot data in The LLNL Explosives Handbook, B. M.

Dobratz. University of California, Livermore, CA 9,1550. See table 7.5.

. . •9
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A

B

Figure 2. Scanning Electron Micrograph of Shock Loaded Comp B.
Magnitude of the shock was about 2.5 GPa. The grains are
RDX particles which are embedded in the TNT matrix. The
shear bands run principally between the RDX grains, although
some shear bands run through the RDX grains. This area was
discolored brown by incipient reaction of the TNT. (A) Magni-
fication is 750X; (B) Enlargement of upper right of (A) at a
magnification of 1500X.
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Figurc 3. Schematic Representation of a Shock Passing Through a Heterogeneous
Ma aterial . The shock velocities differ in the two materials as do
the particle velocitics. As a result, a vetlocity gradient will
dcvelop across these materials giving rise to shear.
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It is to be noted that even in a single constituent explosive, a similar
result will occur. Thle propagation velocity, for a sound wave differs
along various crystal orientations. In such materials, for individual
grains, u (0)will differ significantly from u (1)or u (1)for example

(where thle subscripts refer to thle principal axes along the crystal grains
of the explosive.) Thus,we would obtain various shear velocities depending
onl crystal orientations. For a crystal having the (111) plane parallel to the
(100) plane in a neighboring crystal we would have

vs =v v (3)
s (100) (1)

* Unfortunately,, -sound velocity data a long different crystal axes for explosives
is too sketchy for our present needs, so we will confine our interest to two

- const ituent explosives.

We will also limit our treatment to the case in which the shear takes
place in the matrix. In general, where the effective shear strength of the
explosive approximates the shear strength of the matrix, we may treat the
process of shear formation as taking place in the matrix. Where the shear
strength approximates the shear strength of the grains, shear formation
should be calculated for the grains. In other cases, we must make calculations

*for s;hearing that can occur in either the matrix or the grains. In such cases,

the smaller of the calculated P T values obtained is to be taken for the critical
value characterizing the explosive. Thus, generalization of the present ap-
proach can be achieved in a straight forward way.

It should be noted that shear band formation described here constitutes
the incipient mechanism for shear failure. Large scale mechanical failure of

* thle explosive is associated with the arrival of relief waves from free surfaces
(failure of the explosive's container walls, for example). The arrival of
these relief waves lead to the growth of the incipient shears into larger

* shears that ultimately connect to form macroscopic cracks in the explosive.

IV. SHEAR VELOCITY FOR TWO CONSTITUJENT EXPLOSIVES

-. Writing p1,u 1 for the density and sound velocity in the matrix and

L .,' for the density and sound velocity for the included grains we write

* v p u

PF pu Iy2 u2
where a negative result indicates shearing results from a slower matrix

0 particle velocity. This velocity is the overall shear velocity between the
two constituents of the explosive. It is not the shear band shear velocity
however, as it does not take account of the number of shear bands (on average)
in the matrix lying between two grains. As the shock passes between two grains,

K thle displaced material will strain until relieved by the development of one or
more shear bands.

12



0C)4 4- C

4 ci ('j M* U
U $- -r C 4

M 0

(/) V 4-.0 C

< (N ct* - )~
aU Cl) .0

Ln 0 . .

CN C

F-*- 0 V) 0 -4
Cz )< (AJ t 4.4 -4
LU C) xC C

DL -CD a- - r

0I -jU 44$.4 J

C) II
II J 0 -. u -4LLI

*-tfLnU 0

.,I H 4J 1 )

Q410 >

-n 0  (U J D&

CI) Q) .4 Cd
0 4-4U

-40 k4 P..-4
a ) p Cd

Q_ W 0 =. U $4

'd C) Cd

(D>4J
'-4 c

C)> a) z. r-r
LLU 0)5kt) 0 r.

Cr, -4LL W -4 C:
Q4 ) 4J -4-

LUJ 0... U $- -4 U

V) 4-) V) Cd
0 o4 4 -' 4)0.

41C's U C C)-
LC0 $.ac l )0

(Ds C l)~

IC:) C- CD 4J
C) > u .0

w -4 0 Cl)

~4-) *i4

4J',C 0.. n

0 -4 C

> ) 0.. : )

(D E Cl)

*~~ $.94 u~t).

co 0fn * N 0 4 0 C .0 0

(S/WAj) A11301]A UIHS

13



In Frey's analysis, the shear velocity occurs as a parameter dependent on
the circumstances of cavities and container irregularities. In the present case,
we see that the velocity difference is dependent on the physical properties of

*the explosive. In the case of comp B, v s (km/s) is given, approximately, in
terms of the pressure p) (GPa) by

v =2.79 x 10 -p()

24
Fr ey shows that there is a functional relation between shear velocity and the

* shock pressure, where time to reach a critical ignition temperature appears
as a parameter, Figure 4. With Frey's computed results for the shear velocity
versus shock pressure for TNT as shown in Figure 4, and the relation between
shock pressure and shear velocity for the TNT matrix in comp B, as given in
Equation 5, we can solve to obtain the shock pressure leading to a given ignition
temperature in a specified time. From Figure 4,we obtain a solution of
vs= 40.8 rn/s and p = 1.42 GPa. Assuming the ignition temperature of 10000K

as used by Frey, we calculate a P-T criterion of

P 2T) cit = 2.02 x 10 12(Pa 2S) . (6)

The result is to be compared with an experimental value of 4.41 x 10 12Pa 2S.
The difference in values obtained here arises from the fact that the shear
velocity in Equation 5 is not the shear band shear velocity, but instead
the overall shear velocity between the grains of RDX and matrix of TNT. Let
us now turn to the question of the shear band density which will allow us to
obtain the shear band shear velocity.

V. SHEAR BAND DENSITY

To obtain the shear band shear velocity v bo it is necessary to derive the

* density of the shear bands in the matrix material. Consider the material dis-
* placement as shown in Figure 5. After the shock passes through the explosive,

a shear gradient will develop due to the resistance to shear at the matrix-
* grain interface. In a time t assumed to be very short (i.e., before shear

banding develops) the material behind the shock will assume, approximately,
a rhomboidal displacement as seen in Figure 5. Figure 5 shows one of these
rhomboidal sections broken into several incipient shear bands of width d and
strain 6d such that

* d- total strain in time t v v t (7)
6d number of shear bands D/d

The failure angle 0 at which shear occurs is related to the strain 6d by
max

6d
max (8)

maxr 0 s a property of the material. Of course, Figure 5 idealizes the

regularity of the overall process.

14
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The time at which this shearing occurs depends on the propagation of stress

relief into the material as shear banding develops. Thus, in a time t such a
relief wave can propagate only a distance Ult. This means that the next

nearest shear will be located at most a distance uIt away. Since the process

is more nearly stochastic, the average value for the separation of the shear
bands will be half uI t. Since that distance is also d, we have

'u It = d. (9)

Therefore, from Equations 7, 8, and 9, we have

max I
1d = - (10)

-vs

Now substituting from Equation 4 for vs we obtain

d a[)Ulp lUlp2U2  (11)
d = ax -

211 (02,u2-PlUl1)

The number of shear bands in the gap between grains, n* is, approximately,

4p (p2u, - plu 1 )
n* = 2D/d = (12)

0maxu lp ulP 2u 2

" is given in terms of the shear modulus G and shear strength a bymaIHx max

amax/G. The shear modulus can also be expressed in terms of the Young's

elastic modulus E and Poisson's ratio v by -E/(l+v). Thus,

o = 2 (l+v) ca /E (13)
max max

The value of the shear band shear velocity vb is given by dividing vs
by n, where

n = n*/2 . (14)

Since both v and n are linear in p, vb is independent of p. We have froms b
Equations (4) and (12)

vb = () Ulmax. (l5)

For E = 5.4 GPa, v = 0.3 and amax 0.07 CPa, we have from Equation (13)

0
o = 0.034 (16)
max

for TNT. With u1 of 3.34 km/s as given in Table 1, we obtain from Equation (15),

v = 57 m/s for the shear band shear velocity in the TNT matrix material.

Sb

16
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From Figure 4,we see this yields an intercept at a shock pressure of 1.30 GPa.

This value of the pressure acting for 1 Ps yields for the computed P2T value

2, 12 2
P ) crit = 1.69 x 10 Pa s . (17)

This value is somewhat lower than the experimental value of 4.4 x 1012 Pa2s.
However, the criterion for initiation of the explosive used in Frey's
calculation is similarly approximate. It should be pointed out that as treated here,
this is only an initiation criterion, and not a detonation criterion, as time
must be allowed for the incipient burn of the explosive at these hot spots to

25
generate self sustaining pressures. In a separate report, this problem is con-

sidered in some detail and shown to contribute only a small contribution to the
2
P T value we have here. Thus, using an expression for the shear band shear velocity
under shock ]oading conditions, we can employ Frey's shear band theory to calculate

P2T) crit from the properties of explosive materials.

VI. CONCLUSIONS

A theory relating shock loading to the development of shear bands in explo-

sives has been presented. This theory together with Frey's shear band theory
for the development of hot spots due to shear heating along these shear bands

2
makes it possible to compute P r values for explosives from the mechanical

and thermodynamic properties of the explosive.
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